DeepSeek: DeepSeek V3.2
DeepSeek-V3.2 is a large language model designed to harmonize high computational efficiency with strong reasoning and agentic tool-use performance. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism that reduces training and inference cost while preserving quality in long-context scenarios. A scalable reinforcement learning post-training framework further improves reasoning, with reported performance in the GPT-5 class, and the model has demonstrated gold-medal results on the 2025 IMO and IOI. V3.2 also uses a large-scale agentic task synthesis pipeline to better integrate reasoning into tool-use settings, boosting compliance and generalization in interactive environments. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Related Models
DeepSeek: R1 0528
May 28th update to the [original DeepSeek R1](/deepseek/deepseek-r1) Performance on par wi...
DeepSeek: DeepSeek V3
DeepSeek-V3 is the latest model from the DeepSeek team, building upon the instruction foll...
DeepSeek: R1 Distill Qwen 32B
DeepSeek R1 Distill Qwen 32B is a distilled large language model based on [Qwen 2.5 32B](h...